A message containing letters from A-Z
is being encoded to numbers using the following mapping:
'A' -> 1'B' -> 2...'Z' -> 26
Given an encoded message containing digits, determine the total number of ways to decode it.
For example,
Given encoded message"12"
, it could be decoded as "AB"
(1 2) or "L"
(12). The number of ways decoding "12"
is 2.
这道题要求解码方法,跟之前那道 非常的相似,但是还有一些其他的限制条件,比如说一位数时不能为0,两位数不能大于26,其十位上的数也不能为0,出去这些限制条件,根爬梯子基本没啥区别,也勉强算特殊的斐波那契数列,当然需要用动态规划Dynamci Programming来解。建立一位dp数组,长度比输入数组长多多2,全部初始化为1,因为斐波那契数列的前两项也为1,然后从第三个数开始更新,对应数组的第一个数。对每个数组首先判断其是否为0,若是将改为dp赋0,若不是,赋上一个dp值,此时相当如加上了dp[i - 1], 然后看数组前一位是否存在,如果存在且满足前一位不是0,且和当前为一起组成的两位数不大于26,则当前dp值加上dp[i - 2], 至此可以看出来跟斐波那契数组的递推式一样,代码如下:
C++ 解法一:
class Solution {public: int numDecodings(string s) { if (s.empty() || (s.size() > 1 && s[0] == '0')) return 0; vector dp(s.size() + 1, 0); dp[0] = 1; for (int i = 1; i < dp.size(); ++i) { dp[i] = (s[i - 1] == '0') ? 0 : dp[i - 1]; if (i > 1 && (s[i - 2] == '1' || (s[i - 2] == '2' && s[i - 1] <= '6'))) { dp[i] += dp[i - 2]; } } return dp.back(); }};
Java 解法一:
public class Solution { public int numDecodings(String s) { if (s.isEmpty() || (s.length() > 1 && s.charAt(0) == '0')) return 0; int[] dp = new int[s.length() + 1]; dp[0] = 1; for (int i = 1; i < dp.length; ++i) { dp[i] = (s.charAt(i - 1) == '0') ? 0 : dp[i - 1]; if (i > 1 && (s.charAt(i - 2) == '1' || (s.charAt(i - 2) == '2' && s.charAt(i - 1) <= '6'))) { dp[i] += dp[i - 2]; } } return dp[s.length()]; }}
下面这种方法跟上面的方法的思路一样,只是写法略有不同:
C++ 解法二:
class Solution {public: int numDecodings(string s) { if (s.empty()) return 0; vector dp(s.size() + 1, 0); dp[0] = 1; for (int i = 1; i < dp.size(); ++i) { if (s[i - 1] != '0') dp[i] += dp[i - 1]; if (i >= 2 && s.substr(i - 2, 2) <= "26" && s.substr(i - 2, 2) >= "10") { dp[i] += dp[i - 2]; } } return dp.back(); }};
我们再来看一种空间复杂度为O(1)的解法,我们用两个变量c1, c2来分别表示s[i-1]和s[i-2]的解码方法,然后我们从i=1开始遍历,也就是字符串的第二个字符,我们判断如果当前字符为'0',说明当前字符不能单独拆分出来,只能和前一个字符一起,我们先将c1赋为0,然后我们看前面的字符,如果前面的字符是1或者2时,我们就可以更新c1 = c1 + c2,然后c2 = c1 - c2,其实c2赋值为之前的c1,如果不满足这些条件的话,那么c2 = c1,参见代码如下:
C++ 解法三:
class Solution {public: int numDecodings(string s) { if (s.empty() || s.front() == '0') return 0; int c1 = 1, c2 = 1; for (int i = 1; i < s.size(); ++i) { if (s[i] == '0') c1 = 0; if (s[i - 1] == '1' || (s[i - 1] == '2' && s[i] <= '6')) { c1 = c1 + c2; c2 = c1 - c2; } else { c2 = c1; } } return c1; }};
参考资料: